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Abstract 

Early detection of rice leaf diseases, particularly brown spot, is crucial to prevent 
yield loss, yet manual inspection is often subjective and inefficient. While deep learning 
has shown promise, existing studies often prioritize accuracy without adequately 
addressing the trade-off between model size and inference speed for varying deployment 
scenarios. This study aims to evaluate and compare three backbones—VGG16, ResNet18, 
and MobileNetV2—within the Single Shot Detector (SSD) framework to identify the 
optimal architecture for specific constraints. We utilized 1,000 annotated images with pre-
augmented variations and trained the models using the SSD300 architecture on a 
standardized GPU environment. The results demonstrate a clear accuracy-efficiency trade-
off: SSD-VGG16 achieved the highest accuracy (mAP 0.825) but was the slowest (11.53 
FPS), whereas SSD-MobileNetV2 was the most efficient (29.42 FPS) and lightweight (43.73 
MB) suitable for real-time edge devices, albeit with lower accuracy (mAP 0.707). SSD-
ResNet18 offered a balanced compromise. These findings provide empirical guidelines for 
selecting object detection models based on the priority of either precision or real-time 
capability in agricultural applications. 

 
Keywords: Object Detection, Deep Learning, Brownspot, SSD (Single Shot Detector), 
Accuracy-Efficiency Trade-Off, MobileNetV2, VGG16, RestNet18 

Abstraksi 

Deteksi dini penyakit daun padi, khususnya brown spot, sangat krusial untuk 
mencegah kerugian panen, namun inspeksi manual sering kali subjektif dan tidak efisien. 
Meskipun deep learning menjanjikan solusi, studi yang ada sering kali hanya berfokus 
pada akurasi tanpa membahas secara mendalam kompromi (trade-off) antara ukuran 
model dan kecepatan inferensi untuk berbagai skenario penerapan. Penelitian ini 
bertujuan untuk mengevaluasi dan membandingkan tiga backbone VGG16, ResNet18, 
dan MobileNetV2 dalam kerangka kerja Single Shot Detector (SSD) guna menentukan 
arsitektur optimal sesuai batasan sumber daya. Kami menggunakan 1.000 citra 
beranotasi yang telah diaugmentasi dan melatih model menggunakan arsitektur SSD300 
pada lingkungan GPU standar. Hasil penelitian menunjukkan trade-off yang jelas: SSD-
VGG16 mencapai akurasi tertinggi (mAP 0,825) namun paling lambat (11,53 FPS), 
sementara SSD-MobileNetV2 adalah yang paling efisien (29,42 FPS) dan ringan (43,73 
MB) sehingga cocok untuk perangkat real-time, meskipun dengan akurasi lebih rendah 
(mAP 0,707). SSD-ResNet18 menawarkan keseimbangan di antara keduanya (Hasil). 
Temuan ini memberikan panduan empiris dalam pemilihan model deteksi objek 
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berdasarkan prioritas antara presisi tinggi atau kapabilitas real-time dalam aplikasi 
pertanian. 

 

Kata Kunci: Deteksi Objek, Deep Learning, Brownspot, SSD (Single Shot Detector), Trade-
Off Akurasi-Efisiensi, MobileNetV2, VGG16, RestNet18 

1. PENDAHULUAN 

Padi (Oryza sativa) merupakan komoditas strategis yang berperan penting dalam 

menjaga ketahanan pangan nasional. Salah satu tantangan utama dalam budidaya 

tanaman ini adalah penurunan produktivitas akibat penyakit daun, khususnya brown spot 

yang disebabkan oleh jamur Bipolaris oryzae [1]. Deteksi dini terhadap penyakit ini sangat 

penting untuk mencegah kerugian panen. Namun, metode konvensional seperti 

pemeriksaan manual sering terkendala subjektivitas dan keterlambatan diagnosis. Oleh 

karena itu, diperlukan penerapan teknologi computer vision berbasis deep learning yang 

mampu memberikan deteksi cepat, objektif, dan konsisten di lapangan [2]. 

Penelitian terkini menunjukkan bahwa pengembangan model berbasis arsitektur 

ringan (lightweight) semakin diupayakan agar diagnosis dapat dilakukan secara real-time, 

bahkan pada perangkat dengan keterbatasan sumber daya, tanpa mengorbankan akurasi 

secara signifikan [3]. Single Shot Detector (SSD) tetap menjadi pendekatan yang relevan 

dalam tugas deteksi objek karena kemampuannya mengintegrasikan proses lokalisasi dan 

klasifikasi dalam satu forward pass yang efisien. Tren riset 2024–2025 menunjukkan 

peningkatan fokus pada optimalisasi SSD melalui desain backbone dan integrasi attention 

modules guna meningkatkan akurasi, khususnya dalam mendeteksi objek kecil seperti 

bercak daun [4]. 

Dalam konteks tanaman padi, sejumlah studi menunjukkan bahwa model ringan 

berbasis MobileNet (V2/V3) memiliki potensi besar dalam klasifikasi dan deteksi penyakit 

daun, dengan akurasi kompetitif dan ukuran model kecil. Beberapa penelitian terbaru 

melaporkan peningkatan performa melalui modifikasi arsitektur inverted residual serta 

integrasi algoritma SSD dan YOLO yang disederhanakan, terbukti efektif untuk mendeteksi 

penyakit seperti brown spot, blast, dan blight [5]. 

Meskipun demikian, masih terdapat ketidakpastian mengenai arsitektur mana yang 

paling optimal ketika dihadapkan pada keterbatasan perangkat keras nyata. Pemilihan 

model sering kali didasarkan pada popularitas, bukan pada pertimbangan trade-off antara 

presisi deteksi dan efisiensi komputasi. Oleh karena itu, penelitian ini mengajukan 

pertanyaan utama: bagaimana karakteristik backbone berbeda (VGG16, ResNet18, dan 

MobileNetV2) mempengaruhi keseimbangan antara akurasi deteksi (mAP/IoU) dan 

efisiensi (ukuran model/FPS) dalam kerangka kerja SSD. 

Penelitian ini bertujuan untuk melakukan evaluasi komparatif terhadap ketiga 

arsitektur tersebut. Kontribusi utama penelitian ini adalah: (1) menyajikan analisis empiris 

mengenai performa backbone berat (VGG16) versus ringan (MobileNetV2) untuk deteksi 

penyakit brown spot padi, dan (2) memberikan rekomendasi berbasis data mengenai 

pemilihan model yang sesuai dengan skenario implementasi, baik untuk analisis offline 
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yang menekankan presisi maupun aplikasi mobile yang menuntut kecepatan real-time. 

 

2. TINJAUAN PUSTAKA 

2.1. Penelitian Terdahulu 

Penelitian terdahulu menunjukkan bahwa pendekatan deep learning, khususnya 

dengan arsitektur Convolutional Neural Network (CNN), telah banyak digunakan dalam 

deteksi penyakit tanaman. Chatterjee dan Ghosh [6] melalui studi PlantOHealth 

membandingkan beberapa arsitektur CNN seperti VGG16, VGG19, ResNet, dan 

MobileNetV2 untuk klasifikasi penyakit tanaman menggunakan dataset PlantVillage. Hasil 

penelitian tersebut menunjukkan bahwa MobileNetV2 memberikan akurasi tertinggi 

(99,40%) dengan efisiensi komputasi terbaik, sehingga cocok untuk implementasi real-

time pada perangkat dengan sumber daya terbatas. Namun, penelitian ini hanya berfokus 

pada klasifikasi citra tanpa mencakup deteksi area infeksi secara spasial, sehingga belum 

menjawab kebutuhan akan analisis trade-off antara akurasi dan efisiensi pada tugas 

deteksi objek. 

Wang et al. [7] melakukan penelitian lanjutan dengan menerapkan Single Shot 

Multibox Detector (SSD) berbasis transfer learning untuk mendeteksi hama pada tanaman 

jeruk. Mereka membandingkan beberapa backbone CNN seperti VGG16, ResNet50, dan 

MobileNetV3, dan menemukan bahwa SSD-MobileNetV3 mampu mencapai mean 

average precision (mAP) 86,10% dengan latensi rendah 185 milidetik. Hasil ini 

membuktikan efektivitas arsitektur SSD dengan backbone ringan untuk deteksi cepat 

pada perangkat mobile. Meskipun demikian, penelitian tersebut belum melakukan 

evaluasi komprehensif terhadap trade-off akurasi dan efisiensi pada berbagai arsitektur 

dalam konteks penyakit tanaman. 

Penelitian lain oleh Roseno et al. [8] membandingkan ResNet50, VGG16, dan 

MobileNetV3 untuk klasifikasi penyakit daun padi, termasuk brown spot. MobileNetV3 

mencapai akurasi tertinggi sebesar 79% dan terbukti lebih efisien dibandingkan model 

yang lebih kompleks. Namun, penelitian ini masih terbatas pada klasifikasi tanpa deteksi 

spasial dan tidak mengevaluasi kinerja model dari segi kecepatan inferensi maupun 

ukuran model. 

Dari ketiga penelitian tersebut dapat disimpulkan bahwa meskipun CNN telah 

terbukti efektif untuk klasifikasi penyakit tanaman, masih terdapat kesenjangan 

penelitian dalam penerapan arsitektur SSD untuk tugas deteksi penyakit secara spasial 

dengan mempertimbangkan trade-off antara akurasi dan efisiensi. Oleh karena itu, 

penelitian ini berupaya mengisi celah tersebut dengan melakukan analisis komparatif 

terhadap tiga arsitektur SSDVGG16, ResNet18, dan MobileNetV2 untuk mendeteksi 

penyakit brown spot pada padi, guna memperoleh pemahaman empiris mengenai 

keseimbangan optimal antara presisi dan performa komputasi. 
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3. METODE PENELITIAN 

3.1. Pengumpulan Data 

Penelitian ini menggunakan dataset citra daun padi publik dari platform Kaggle 

(Sankalana, 2020). Dari dataset tersebut, sebanyak 1000 citra yang mengandung penyakit 

Brown Spot dipilih untuk eksperimen. Untuk melatih model deteksi objek, dilakukan 

proses anotasi manual menggunakan perangkat lunak LabelImg. Setiap area yang 

teridentifikasi Brown Spot diberi kotak pembatas (bounding box) dan disimpan dalam 

format label.xml.  

 

Gambar 1. Citra Penyakit brownspot 

Kumpulan data yang telah dianotasi ini terdiri dari 1000 citra dan 1000 file label 

kemudian diunggah oleh peneliti sebagai dataset baru ke platform Kaggle untuk 

digunakan dalam lingkungan kerja (Kaggle Notebook). Dataset inilah yang menjadi 

sumber data utama yang siap digunakan untuk tahap pra-pemrosesan. Penelitian ini 

difokuskan sebagai deteksi satu kelas (single-class detection), di mana model dilatih untuk 

membedakan antara kelas Brownspot dan Background. 

3.2. Pre-Processing 

Penelitian ini memanfaatkan dataset yang telah melalui proses augmentasi awal 

(offline augmentation) dari penyedia dataset untuk mengatasi keterbatasan jumlah 

sampel data latih tanpa menambah beban komputasi melalui augmentasi on-the-fly 

selama pelatihan. Berdasarkan observasi karakteristik dataset, teknik augmentasi yang 

diberikan mencakup manipulasi posisi citra, yaitu pembalikan citra secara horizontal dan 

vertikal untuk mensimulasikan variasi orientasi daun, serta rotasi sudut tetap seperti 90°, 

180°, dan 270° guna menghasilkan perubahan orientasi tanpa mengganggu struktur visual 

daun. Setelah proses augmentasi awal tersebut, tahap pra-pemrosesan difokuskan pada 

penyeragaman dimensi masukan dengan melakukan resize seluruh citra beserta 

anotasinya menjadi 300×300 piksel agar sesuai dengan spesifikasi arsitektur SSD300. 

Selanjutnya, dataset dibagi secara acak menjadi dua subset, yaitu 80% (800 citra) sebagai 

data latih dan 20% (200 citra) sebagai data validasi [9]. 
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3.3. Arsitektur Model  

Kerangka kerja deteksi objek utama yang digunakan dalam penelitian ini adalah 

Single Shot Detector (SSD). Metode SSD dipilih karena kemampuannya yang unggul dalam 

deteksi objek secara real-time. Berbeda dengan arsitektur dua tahap seperti R-CNN, SSD 

melakukan prediksi lokasi (bounding box) dan klasifikasi objek secara simultan dalam satu 

kali proses inferensi (single pass), menjadikannya sangat efisien [10]. Penelitian ini 

menggunakan varian SSD300 yang menerima citra masukan beresolusi 300×300 piksel. 

Fokus utama analisis terletak pada evaluasi tiga backbone berbeda yang terintegrasi 

dengan kerangka kerja SSD untuk mengkaji trade-off antara akurasi deteksi dan efisiensi 

komputasi. 

 

 

Gambar 2. Arsitektur SSD300 

 

Fokus utama dari analisis komparatif ini terletak pada penggunaan arsitektur 

backbone (jaringan ekstraktor fitur) yang berbeda, yang terintegrasi dengan kerangka 

kerja SSD. Tiga backbone yang berbeda diimplementasikan dan dievaluasi untuk 

menganalisis secara kuantitatif trade-off antara akurasi deteksi dan efisiensi komputasi. 

3.3.1. SSD-VGG16 

VGG16 digunakan sebagai backbone baseline atau pembanding utama karena 

secara historis merupakan backbone standar pada arsitektur SSD orisinal [11]. 

Berdasarkan implementasi, model ini diinisialisasi menggunakan ssd300_vgg16 yang telah 

tersedia di library torchvision.models.detection. Implementasi memanfaatkan bobot pre-

trained SSD300_VGG16_Weights.DEFAULT, dengan modifikasi pada classification head 

untuk menyesuaikan jumlah kelas penelitian (num_classes=2). Pendekatan ini merupakan 

bentuk transfer learning standar dengan penyesuaian lapisan akhir model [11]. 

 

Gambar 2. Arsitektur VGG16 
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3.3.2. SSD-RestNet18 

Arsitektur ini menggunakan ResNet18 sebagai backbone. Berbeda dengan VGG16, 

library torchvision tidak menyediakan model ssd300_resnet18 siap pakai, sehingga 

arsitektur harus dibangun secara manual. Model ResNet18 pre-trained dimuat, dengan 

menghapus layer avgpool dan fully connected untuk mengambil feature map dasar 

berukuran 512 channel. Karena SSD membutuhkan feature maps dari berbagai skala, 

serangkaian extra convolutional layers ditambahkan secara manual untuk menghasilkan 

representasi multi-skala yang diperlukan oleh detection head, sebagaimana dijelaskan 

dalam penelitian serupa yang memanfaatkan ResNet sebagai backbone SSD [12], [13]. 

Gambar 3. Arsitektur RestNet18 

3.3.3. SSD-MobileNetV2 

Arsitektur ini menggunakan MobileNetV2 sebagai backbone. Serupa dengan 

implementasi ResNet18, arsitektur SSD-MobileNetV2 merupakan rakitan kustom karena 

tidak tersedia secara default di torchvision. Bagian ekstraktor fitur dari model 

mobilenet_v2 pre-trained dimuat, yang terdiri dari blok inverted residual dan depthwise 

separable convolutions sehingga lebih ringan dan efisien. Feature map keluaran backbone 

ini memiliki 1280 channel, dan seperti pada ResNet18, extra convolutional layers 

ditambahkan secara manual untuk menciptakan multi-scale feature maps yang diperlukan 

oleh SSD [14]. 

 

 

Gambar 4. Arsitektur MobileNetV2 
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3.4. Hyperparameter 

 Ketiga model (SSD-VGG16, SSD-ResNet18, SSD-MobileNetV2) dilatih 

menggunakan framework PyTorch. Proses pelatihan dieksekusi pada platform Kaggle 

dengan hardware GPU NVIDIA T4 x2. Untuk perbandingan yang adil, ketiga model dilatih 

menggunakan pengaturan hyper-parameter yang sama. 

 

Tabel 1. Hyperparameter 

Hyper-parameter Value 

Optimizer Stochastic Gradient Descent 

Learning Rate 0.002 

Momentum 0.9 

Weight Decay 5e-4 

Batch Size 64 

Epochs 200 

 

3.5. Metode Evaluasi 

Kinerja model dievaluasi menggunakan dua metrik standar dalam deteksi objek, 

yaitu Intersection over Union (IoU) dan mean Average Precision (mAP). Pemilihan kedua 

metrik ini didasarkan pada pertimbangan komprehensif: IoU digunakan untuk mengukur 

akurasi lokalisasi (bounding box), sedangkan mAP digunakan untuk mengukur ketepatan 

klasifikasi sekaligus sensitivitas model terhadap objek yang ada [15]. 

Intersection over Union (IoU) IoU adalah metrik evaluasi fundamental yang 

mengukur seberapa akurat kotak prediksi (predicted box) menutupi objek yang 

sebenarnya (ground truth). Secara teknis, IoU dihitung sebagai rasio antara luas area 

irisan (intersection) dan luas area gabungan (union) dari kedua kotak tersebut. Rumus IoU 

didefinisikan sebagai: 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐵𝑝 ∩  𝐵𝑔𝑡)

𝐴𝑟𝑒𝑎(𝐵𝑝 ∪  𝐵𝑔𝑡)
 

 

Di mana 𝐵𝑝 adalah bounding box hasil prediksi dan 𝐵𝑔𝑡 adalah bounding box anotasi asli 

(ground truth). Sebuah prediksi dianggap sebagai True Positive hanya jika nilai IoU 

melampaui ambang batas (threshold) tertentu, yang memastikan bahwa deteksi tidak 

hanya benar secara kelas, tetapi juga akurat secara posisi [15]. 

 mean Average Precision (mAP) mAP merupakan rata-rata nilai Average Precision 

(AP) dari seluruh kelas yang diuji. Metrik ini dipilih karena kemampuannya 

menggambarkan kurva Precision-Recall (PR), yaitu keseimbangan antara seberapa akurat 

prediksi model (Precision) dan seberapa banyak objek asli yang berhasil ditemukan 

(Recall) [16]. 

𝐴𝑃 =  
1

11
∑ 𝑝{𝑖𝑛𝑡𝑒𝑟𝑝}(𝑟)

{𝑟 ∈{0,0.1,…,1}}
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Pendekatan ini memastikan bahwa fluktuasi kecil pada kurva presisi-recall tidak 

membiaskan evaluasi kinerja model secara keseluruhan. 

 

4. HASIL DAN PEMBAHASAN 

 Bab ini menyajikan analisis komparatif kinerja tiga arsitektur backbone SSD 

(VGG16, ResNet18, dan MobileNetV2) dalam mendeteksi penyakit brown spot. Evaluasi 

dilakukan berdasarkan metrik akurasi (mAP, IoU) dan efisiensi (Ukuran Model, FPS). 

4.1. Dinamika Pelatihan Model 

Proses pelatihan ketiga model selama 200 epoch divisualisasikan dalam Gambar 5. 

Grafik tersebut memperlihatkan perbandingan antara penurunan training loss (kurva 

biru) dan peningkatan validation mAP (kurva merah). Secara umum, SSD-VGG16 

menunjukkan stabilitas pelatihan terbaik dengan konvergensi loss yang paling rendah, 

mengindikasikan kapasitas model yang besar dalam mempelajari fitur kompleks dari citra 

penyakit. Sebaliknya, pada grafik SSD-MobileNetV2, terlihat kesenjangan (gap) yang lebih 

lebar antara loss pelatihan dan akurasi validasi dibandingkan dua model lainnya. 

Fenomena ini mengindikasikan bahwa arsitektur yang sangat ringan memiliki 

kecenderungan lebih cepat mencapai batas kapasitas belajarnya (capacity saturation) 

dibandingkan arsitektur yang lebih dalam. 

 

Gambar 5. Perbandingan training loss (biru) dan validation mAP (merah) pada tiga 

arsitektur backbone SSD: VGG16, MobileNetV2, dan ResNet18 

 

4.2. Evaluasi Kinerja Kuantitatif 

Rangkuman performa akhir dari ketiga model setelah dilakukan pengujian silang 

rata-rata (average runs) disajikan secara rinci pada Tabel 2. 
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Tabel 2. Hasil Perbandingan Kinerja Tiga Arsitektur Backbone SSD 

 

Berdasarkan data pada Tabel 2, terlihat pola trade-off yang jelas antara akurasi dan 

efisiensi komputasi. SSD-VGG16 menunjukkan performa terbaik dalam hal akurasi dengan 

nilai mAP 0.825 dan IoU 0.548. Keunggulan ini konsisten dengan temuan Chatterjee dan 

Ghosh [6], yang menjelaskan bahwa kedalaman jaringan serta jumlah parameter yang 

besar pada arsitektur VGG memungkinkan ekstraksi fitur visual yang lebih kaya dan stabil. 

Namun, kompleksitas ini berdampak pada efisiensi komputasi; model memiliki ukuran 

terbesar (90.71 MB) dan kecepatan inferensi terendah (11.53 FPS), yang berada jauh di 

bawah ambang batas real-time. 

Sebaliknya, SSD-MobileNetV2 memperlihatkan karakteristik yang berlawanan. 

Model ini menonjol dalam efisiensi, dengan ukuran file terkecil (43.73 MB) dan kecepatan 

inferensi tertinggi, mencapai 29.42 FPS. Hasil ini sejalan dengan penelitian Wang et al. [7], 

yang menyoroti potensi arsitektur ringan berbasis MobileNet dalam penerapan deteksi 

objek real-time pada perangkat dengan keterbatasan sumber daya. Kecepatan 29 FPS 

menjadikan SSD-MobileNetV2 satu-satunya model yang memenuhi kriteria real-time 

inference (>25 FPS). Namun, efisiensi ini diiringi oleh penurunan akurasi hingga mAP 

0.707, yang mengonfirmasi bahwa penggunaan depthwise separable convolution, 

meskipun efisien, mengurangi kedalaman representasi fitur dibandingkan konvolusi 

standar pada VGG. 

Sebagai kompromi, SSD-ResNet18 menunjukkan keseimbangan terbaik antara 

akurasi dan efisiensi. Dengan nilai mAP 0.796 dan kecepatan 21.08 FPS, model ini 

mendekati akurasi SSD-VGG16 namun dengan ukuran model yang jauh lebih kecil dan 

kecepatan inferensi lebih tinggi. Hasil ini sejalan dengan temuan Roseno et al. [8], yang 

menunjukkan bahwa arsitektur ResNet memiliki kemampuan generalisasi yang baik 

berkat mekanisme residual connection, sehingga dapat mempertahankan performa tinggi 

tanpa meningkatkan jumlah parameter secara signifikan. 

Secara keseluruhan, hasil ini memperkuat kesimpulan bahwa pemilihan backbone 

sangat memengaruhi trade-off antara akurasi dan efisiensi komputasi pada arsitektur SSD. 

SSD-VGG16 unggul untuk aplikasi yang menuntut akurasi tinggi, SSD-ResNet18 

menawarkan keseimbangan optimal, sementara SSD-MobileNetV2 menjadi pilihan 

terbaik untuk sistem real-time yang beroperasi pada perangkat dengan sumber daya 

terbatas. 

Model mAP (𝒎𝒆𝒂𝒏 ±  𝒔𝒕𝒅) IoU (𝒎𝒆𝒂𝒏 ±  𝒔𝒕𝒅) Ukuran Model 
Kecepatan 

(FPS) 

VVG16 (0.8253± 0.0152) (0.5477± 0.0171) 90.71 MB 11.53 

ResNet18 (0.7959± 0.0152) (0.5130± 0.0236) 55.90 MB 21.08 

MobileNetV2 (0.7068± 0.0178) (0.4680± 0.0123) 43.73 MB 29.42 
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4.3. Validasi Visual Deteksi 

Kualitas deteksi model juga divalidasi secara kualitatif. Seperti diperlihatkan pada 

Gambar 6, model mampu melokalisasi bercak brown spot dengan bounding box yang 

cukup presisi. Meskipun ketiga model mampu mendeteksi objek, variasi nilai IoU pada 

Tabel 2 mencerminkan seberapa rapat kotak prediksi tersebut menempel pada objek asli. 

VGG16 cenderung menghasilkan kotak yang sangat pas (tight fit), sementara 

MobileNetV2 terkadang menghasilkan kotak yang sedikit bergeser atau kurang presisi 

pada tepi bercak yang kabur. 

 

Gambar 6. Visualisasi sampel citra daun padi dengan anotasi bounding box yang menandai area 
penyakit brown spot 

 

Temuan keseluruhan penelitian ini memperjelas posisi masing-masing arsitektur 

dalam spektrum aplikasi pertanian presisi. Jika Simhadri dkk. [3] menekankan pentingnya 

pergeseran ke arah model ringan (lightweight) untuk implementasi lapangan, hasil 

penelitian ini memberikan batasan empiris bahwa pergeseran tersebut (menggunakan 

MobileNetV2) akan mengorbankan sekitar 12% akurasi (selisih mAP 0.825 vs 0.707) 

dibandingkan model berat. Oleh karena itu, pemilihan model tidak dapat digeneralisasi, 

melainkan harus disesuaikan dengan prioritas spesifik pengguna: apakah mengejar presisi 

diagnosis maksimal atau responsivitas sistem di lapangan. 
 

5. KESIMPULAN 

Penelitian ini memberikan kontribusi empiris dengan memetakan trade-off krusial 

antara akurasi deteksi dan efisiensi komputasi pada arsitektur SSD untuk kasus penyakit 

brown spot padi. Hasil evaluasi menegaskan bahwa pemilihan backbone sangat 

bergantung pada skenario implementasi; SSD-VGG16 terbukti memberikan kontribusi 

akurasi tertinggi (mAP 0,825) yang ideal untuk analisis presisi berbasis server (offline), 

sementara SSD-MobileNetV2 menawarkan efisiensi terbaik sebagai satu-satunya model 

yang mencapai kecepatan real-time (29,42 FPS), menjadikannya solusi paling layak untuk 

implementasi pada perangkat mobile di lapangan meskipun dengan sedikit penurunan 

akurasi. 

Berdasarkan temuan tersebut, penelitian selanjutnya disarankan untuk berfokus 

pada upaya menjembatani kesenjangan antara akurasi dan kecepatan. Pengembangan di 
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masa depan dapat mengeksplorasi integrasi mekanisme atensi (attention modules) pada 

arsitektur ringan seperti MobileNetV2 untuk mendongkrak akurasinya tanpa membebani 

komputasi secara signifikan, atau menerapkan teknik kompresi model (seperti pruning 

dan quantization) pada model yang lebih berat agar dapat beroperasi lebih efisien di 

perangkat dengan sumber daya terbatas. 
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